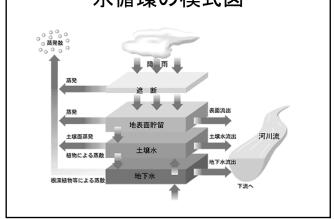
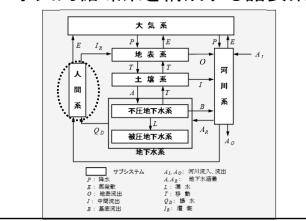

2025年度(R07年度)


地下水盆管理学

福島大学 共生システム理工学類 地球環境コース 柴崎 直明

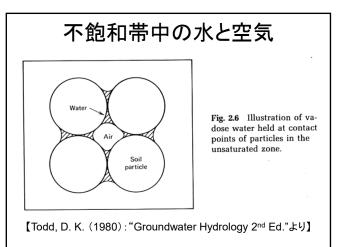

2. 地下水の存在形態

水循環の模式図

水文的循環系を構成する諸要素

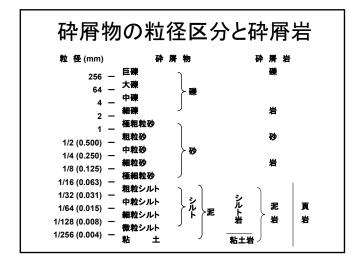
水文的循環系と地下水

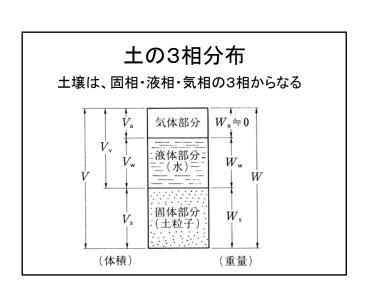

地下水(Groundwater)とは?

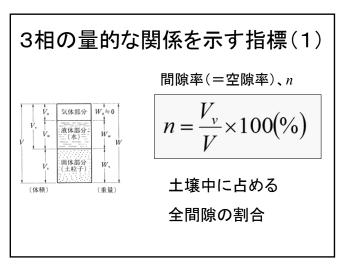

広義: 地下に存在するすべての水のこと

狭義: 地下水面より下位にある水のこと。 ただし、マグマ水(地殻の内部で生成された水)は含まない。

地下水面より上位の部分: 不飽和帯

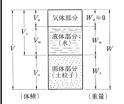

地下水面より下位の部分: 飽和帯





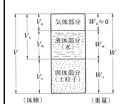
地下水の存在形態の特徴

地下水の存在形態は、地層間隙 (=空隙)の形状・規模・連続性と、 それに含まれる水量で大きく異なる



3相の量的な関係を示す指標(2)

体積含水率、 θ

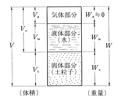


$$\theta = \frac{V_w}{V} \times 100(\%)$$

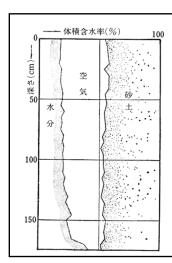
土壌中に占める 水分の割合

3相の量的な関係を示す指標(3)

含水比、w


$$W = \frac{W_w}{W_s} \times 100(\%)$$

水と土の重量比


3相の量的な関係を示す指標(4)

飽和度、Sa

$$Sa = \frac{V_w}{V_v} \times 100 = \frac{\theta}{n} \times 100(\%)$$

土壌中の間隙が水分 で満たされている割合

土層の 3相分布の例

(金子、1973による)

間隙中の水

土粒子との結合の強弱により、水の挙動は 異なる。

水と土粒子の結合の強弱

pFという単位で示す

圧力を水柱の高さ(cm)に 換算し、その対数をとった もの(SI単位系ではない)

土壌水の分類

3大区分:

蒸気態水分、結合水(吸着水)、自由水

表 3.1 土壌水の分類 (Po Дe3)による) 蒸気態水分 2.7~4.5 されている水など (降下運動中の重力水) (毛管水帯の水および帯水層中の水) 重力水 {降下水 支持水) 2.7 以下

毛管中の水の上昇

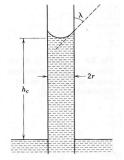


Fig. 2.7 Rise of water in a capillary tube.

毛管上昇量の概略式:

$$hc = \frac{0.15}{r}$$

【Todd, D. K. (1980) : "Groundwater Hydrology 2nd Ed."より】

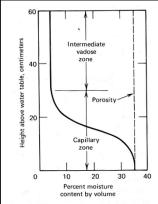


Fig. 2.8 Distribution of water in a coarse sand above the water table after drainage (after Prill³⁷).

地下水面 よりも上位の 粗粒砂中の 水の分布 (排水後)

【Todd, D. K. (1980): "Groundwater Hydrology 2nd Ed."より】

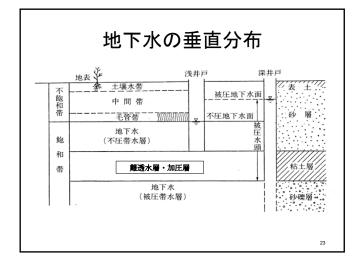

粒子の粒径と表面積

TABLE 2.3 Relation of Surface Area to Particle Size for Uniform Spheres

to runting place for children opinions				
Diameter of Particle, mm	Soil Classification	Number of Particles per cm ³	Total Surface Area, cm ²	
10	Medium gravel	1	3.14	
1	Coarse sand	$1 imes 10^3$	31.4	
0.1	Very fine sand	$1 imes10^6$	314	
0.02	Silt	$1.25 imes 10^8$	1,570	
0.002	Clay	1.25×10^{11}	15,700	

NOTE: Rectangular packing is assumed in a cubic container 1 cm on a side so that the total volume, and weight, of spheres remains constant at $\pi/6$ cm³.

【Todd, D. K. (1980) : "Groundwater Hydrology 2nd Ed."より】

不飽和帯の水分

上位より、土壌水帯、中間帯、毛管帯に区分

毛管帯:

毛管現象で、地下水面から水分が上 昇した部分

粗粒砂: 2~15 cm 細粒砂: 35~75 cm

粘土: 150~300 cm

飽和帯の地下水

飽和帯の地下水は、連続体として移動する

飽和帯の地下水の挙動:

間隙(=空隙)の性質を理解する必要

一般に、地層の構成物が細粒なほど、 間隙率は大きい

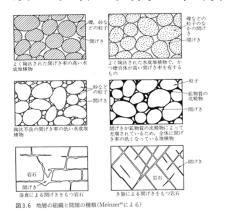
間隙の形状、規模、粒子の配列も地下 水流動を規制している

代表的な地層の間隙率

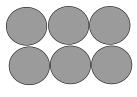
粘土: 45%

砂: 35%

礫: 25%

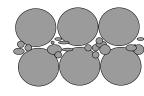

砂礫:

砂岩: 15%


石灰岩・頁岩: 10%

チャート・花崗岩: 5%

地層の組織と間隙の種類


粒子の淘汰度と間隙率

淘汰良好

20%

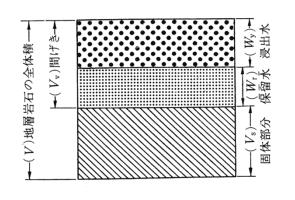
(Well Sorted)

淘汰不良

(Poorly Sorted)

有効間隙率

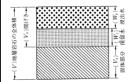
飽和帯の間隙中の水は、排水や揚水で間隙から完全に排除されない



一部は、吸着水や毛管水として保留される

土粒子間を流動できる水分の割合は、間隙 率よりも小さい

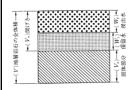
間隙率(n)>有効間隙率 (n_e)


飽和帯の保留水と浸出水

保留水と比保留量

保留水: 飽和帯の間隙に保留される水

比保留量、 S_r


$$S_r = \frac{W_r}{V} \times 100(\%)$$

地層・岩石など飽和帯 の全体積に対する比

浸出水と比浸出量

浸出水: 排水または揚水で排出される水

比浸出量、 S_v

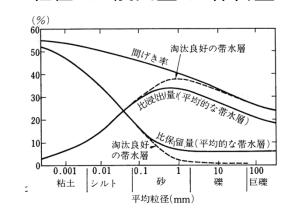
$$S_y = \frac{W_y}{V} \times 100(\%)$$

排出される水量の全容量に対する比

比浸出量と有効間隙率

比浸出量=有効間隙率

比浸出量あるいは有効間隙率は、地下水の定量化にあたっての基本的概念


主に粒度組成で決定される

一般に10~20%程度の値

代表的な地層の間隙率と比浸出量

地層名	間隙率	比浸出量
粘土:	45%	3%
砂:	35%	25%
礫:	25%	22%
砂礫:	20%	16%
砂岩:	15%	8%
石灰岩•頁岩:	10%	2%
チャート・花崗岩:	5%	0.5%

粒径と比浸出量・比保留量

参考文献

水収支研究グループ編 「地下水資源・環境論ーその理論と実践ー」 共立出版、1993年

Todd and Mays: "Groundwater Hydrology 3rd Ed.", John Wiley & Sons, 2005年

それでは、また来週!!