A geometrical characterization of a class of nowhere differentiable functions

Yasuhiro Fujita
University of Toyama

The aim of this talk is to give a geometrical characterization of a class of everywhere continuous and nowhere differentiable functions. The word "geometrical" is used, since this characterization is based on an inequality for a family of parabolas with vertices on the graph of a function (see (F1) ${ }_{c}$ below). As an application of this characterization, we show that the inf-convolution of a function in this class possesses remarkable properties. We also investigate a structure of this class.

First of all, we give the definition of the class \mathcal{P}, which is the central subject of our study in this talk. Let us denote by $C_{p}(\mathbb{R})$ the set of all continuous and periodic functions from \mathbb{R} to \mathbb{R} with period 1 . Throughout this talk, we assume that r is an integer such that $r \geq 2$. Given a function $f \in C_{p}(\mathbb{R})$, we consider, for each $n \in \mathbb{N}_{0}:=\mathbb{N} \cup\{0\}, k \in \mathbb{Z}$ and $y \in(0,1)$, the first-order forward and backward differences of f at $(k+y) / r^{n}$ defined, respectively, by

$$
\delta_{n, k}^{+}(y ; f)=\frac{f\left(\frac{k+1}{r^{n}}\right)-f\left(\frac{k+y}{r^{n}}\right)}{\frac{1-y}{r^{n}}}, \quad \delta_{n, k}^{-}(y ; f)=\frac{f\left(\frac{k+y}{r^{n}}\right)-f\left(\frac{k}{r^{n}}\right)}{\frac{y}{r^{n}}} .
$$

Definition. For any given constant $c>0$, a function $f \in C_{p}(\mathbb{R})$ belongs to \mathcal{P}_{c} exactly when

$$
\delta_{n, k}^{+}(y ; f)-\delta_{n, k}^{-}(y ; f) \leq-c
$$

for all $(n, k, y) \in \mathbb{N}_{0} \times \mathbb{Z} \times(0,1)$. We use the notation $\mathcal{P}=\bigcup_{c>0} \mathcal{P}_{c}$. Note that both \mathcal{P}_{c} and \mathcal{P} depend on the choice of r though we omit it in our notation.

Inequality above can be written equivalently as

$$
\Delta_{n, k}(y ; f) \leq-2 c r^{n}
$$

where $\Delta_{n, k}(y ; f)$ is the second-order central difference defined by

$$
\Delta_{n, k}(y ; f)=2 r^{n}\left(\delta_{n, k}^{+}(y ; f)-\delta_{n, k}^{-}(y ; f)\right)
$$

Thus, a function $f \in \mathcal{P}$ satisfies a concavity-type estimate.
We will show that each function in \mathcal{P} is nowhere differentiable and that we can systematically construct a large number of examples of functions in \mathcal{P} through an explicit formula.

Now, we explain our geometrical characterization. For a function $f \in C_{p}(\mathbb{R})$, let us consider the family of parabolas $\left\{q_{f}(t, x ; z)\right\}_{z \in \mathbb{R}}$ defined by

$$
q_{f}(t, x ; z)=f(z)+\frac{1}{2 t}(x-z)^{2}, \quad(t, x, z) \in(0, \infty) \times \mathbb{R} \times \mathbb{R}
$$

We will show that a function $f \in C_{p}(\mathbb{R})$ belongs to \mathcal{P}_{c} if and only if
$(\mathrm{F} 1)_{c}$ For all $(n, k, y) \in \mathbb{N}_{0} \times \mathbb{Z} \times(0,1)$ and $t \geq 1 /\left(2 c r^{n}\right)$,

$$
q_{f}\left(t, x ; \frac{k+y}{r^{n}}\right) \geq \min \left\{q_{f}\left(t, x ; \frac{k}{r^{n}}\right), q_{f}\left(t, x ; \frac{k+1}{r^{n}}\right)\right\}, \quad x \in \mathbb{R}
$$

We apply $(\mathrm{F} 1)_{c}$ to the inf-convolution $\left\{H_{t} f\right\}_{t>0}$ defined by

$$
H_{t} f(x)=\inf _{z \in \mathbb{R}} q_{f}(t, x ; z), \quad(t, x) \in(0, \infty) \times \mathbb{R}
$$

for any given function $f \in \mathcal{P}_{c}$.
We also investigate a structure of \mathcal{P}. For this purpose, let us define the operator $U: \psi \in$ $C_{p}(\mathbb{R}) \rightarrow U_{\psi} \in C_{p}(\mathbb{R})$ by

$$
U_{\psi}(y)=\sum_{j=0}^{\infty} \frac{1}{r^{j}} \psi\left(r^{j} y\right), \quad y \in \mathbb{R}
$$

It is easy to see that U is bijective. We would like to know the structure of $U^{-1}(\mathcal{P})$. Although we cannot determine it completely, we will show that

$$
\begin{aligned}
& S C_{0}(\mathbb{R}) \backslash\{0\} \subset U^{-1}(\mathcal{P}), \quad\left(\bigcup_{\alpha>0} S C_{\alpha}(\mathbb{R}) \backslash S C_{0}(\mathbb{R})\right) \cap U^{-1}(\mathcal{P}) \neq \emptyset, \\
& \left(\bigcup_{\alpha>0} S C_{\alpha}(\mathbb{R})\right) \cap U^{-1}(\mathcal{N} \backslash \mathcal{P}) \neq \emptyset
\end{aligned}
$$

where

$$
\begin{aligned}
& S C_{\alpha}(\mathbb{R})=\left\{\psi \in C_{p}(\mathbb{R}) \left\lvert\, \psi(x)+\frac{\alpha}{2} x(1-x)\right. \text { is concave on }[0,1]\right\}, \quad \alpha \geq 0 \\
& \mathcal{N}=\left\{\xi \in C_{p}(\mathbb{R}) \mid \xi \text { is nowhere differentiable on } \mathbb{R}\right\}
\end{aligned}
$$

From these results, we see that the Takagi function belongs to \mathcal{P} but a Weierstrass-type function does not belong to \mathcal{P}.

This talk is based on a joint work with Nao Hamamuki (Hokkaido University), Antonio Siconolfi (Sapienza Università di Roma) and Norikazu Yamaguchi (University of Toyama).

