

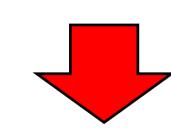
廃棄物系バイオマスの炭化処理過程 における効率的な水素製造法の確立

隆志(福島大学 共生システム理工学類)

研究の目的

バイオマスは再生可能エネルギーとして太陽エネルギー、風力エネルギーとともに今後の発展が期待されているエネルギー源 の一つである。バイオマスのエネルギー利用方法としては直接燃焼、ガス化、メタン発酵、バイオエタノール化、BDF化、炭化等 が広く知られている。本研究においては,炭化技術中心のバイオマス・リファイナリーとして,製材工場残材等の廃棄物系バイオ マスを炭化処理により、効率的に水素ガス化する技術を開発し、同時に得られる機能性材料としての炭化物の利活用法開発を 目的とする。

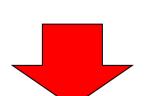
バイオマスリファイナリーとは? バイオマスを原料として,多種多


様な燃料や有用物質を体系的に 生産すること。

<バイオマス·ニッポンより>

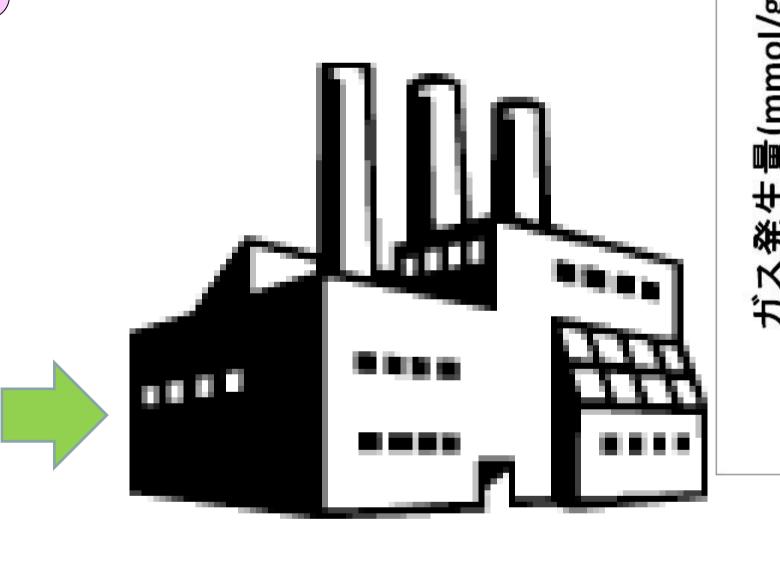
エネルギー利用 燃料電池•水素自動車等

廃棄物系バイオマスから生成 した水素は精製し燃料電池や 水素自動車等で利用


バイオマスのエネルギー利用

炭化技術を中心としたバイオマスのマテ リアル利用とエネルギー利用によるバイ オマスリファイナリーの構築

廃棄物系バイオマス 林産資源(製材工場残材)等



水素製造の原料として,廃 棄物系バイオマスである おが屑等の製材工場残材 や未利用バイオマスであ る林地残材等を使用

バイオマスの有効活用・利活用促進

水素ガス化

600 800 1000 炭化温度(°C) 木質バイオマスの炭化過程 における各ガス発生量比較

炭化処理によるバイオマスの 効率的水素ガス化法の検討

9.0

8.0

3.0

■ H2

■ CO

CH4

■ CO2

炭化処理

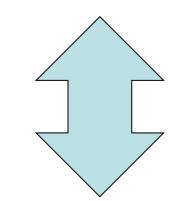
バイオマス炭化物 バイオマスのマテリアル利用

炭化温度	BET表面積	全細孔容積	平均細孔径
°C	m^2/g	mL/g	nm
600	1. 7	0.0025	6. 6
800	43. 5	0.0346	3. 5
1000	15. 8	0. 0200	5. 1

表1. 炭化物の細孔特性

表2. 炭化物の性状

炭化温度 ℃	収率	固定炭素	揮発分	灰分
600	29. 4	88	9	1
800	27. 3	92	5	1
1000	27. 3	96	1	2


機能性材料開発・エネルギー利用等

目標

バイオマス1g(乾燥重量)当たり炭化過程における 水素ガス生成量 現状 8 mmol → 20 mmol

従来のバイオマスからの水素製造

バイオマスからの水素製造は熱化学的ガス化法と生物的 水素生産法が知られている。熱化学的ガス化法や生物的 水素生産法は生産物として水素のみが得られる。

本研究の特徴

- 本研究におけるバイオマスからの水素製造法は生産 物として水素だけでなく機能性材料としてのバイオマス 炭化物を同時に製造することが可能。
- ・バイオマスリファイナリーにより、残さや廃棄物が少ない。